Extensions 1→N→G→Q→1 with N=C32 and Q=C32⋊C4

Direct product G=N×Q with N=C32 and Q=C32⋊C4
dρLabelID
C32×C32⋊C436C3^2xC3^2:C4324,161

Semidirect products G=N:Q with N=C32 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C32⋊(C32⋊C4) = C344C4φ: C32⋊C4/C32C4 ⊆ Aut C3218C3^2:(C3^2:C4)324,164
C322(C32⋊C4) = C3×C33⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C32124C3^2:2(C3^2:C4)324,162
C323(C32⋊C4) = C34⋊C4φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C3236C3^2:3(C3^2:C4)324,163

Non-split extensions G=N.Q with N=C32 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C32.(C32⋊C4) = C92⋊C4φ: C32⋊C4/C32C4 ⊆ Aut C32184+C3^2.(C3^2:C4)324,35
C32.2(C32⋊C4) = He34Dic3φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C32186C3^2.2(C3^2:C4)324,113
C32.3(C32⋊C4) = C3×He3⋊C4central extension (φ=1)54C3^2.3(C3^2:C4)324,110

׿
×
𝔽